config_wrangler.config_from_loaders module
- pydantic model config_wrangler.config_from_loaders.ConfigFromLoaders[source]
- Bases: - ConfigRoot- Base class for settings, allowing values to be set by files or environment variables. - Config:
- validate_default: bool = True 
- validate_assignment: bool = True 
- validate_credentials: bool = True 
 
- Fields:
 - field passwords: PasswordDefaults = PasswordDefaults(password_source=None, keepass_config='keepass', keepass=None)
- Default configuration for passwords within this config hierarchy. 
 - __init__(_config_data_loaders: List[BaseConfigDataLoader], config_load_log_level: int = 20, **kwargs: Dict[str, Any]) None[source]
- Note: Uses something other than self the first arg to allow “self” as a settable attribute 
 - add_child(name: str, child_object: ConfigHierarchy)
- Set this configuration as a child in the hierarchy of another config. For any programmatically created config objects this is required so that the new object ‘knows’ where it lives in the hierarchy – most importantly so that it can find the hierarchies root object. 
 - copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model
- Returns a copy of the model. - !!! warning “Deprecated”
- This method is now deprecated; use model_copy instead. 
 - If you need include or exclude, use: - `py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
- include¶ – Optional set or mapping specifying which fields to include in the copied model. 
- exclude¶ – Optional set or mapping specifying which fields to exclude in the copied model. 
- update¶ – Optional dictionary of field-value pairs to override field values in the copied model. 
- deep¶ – If True, the values of fields that are Pydantic models will be deep-copied. 
 
- Returns:
- A copy of the model with included, excluded and updated fields as specified. 
 
 - dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]
 - classmethod from_orm(obj: Any) Model
 - full_item_name(item_name: str = None, delimiter: str = ' -> ')
- The fully qualified name of this config item in the config hierarchy. 
 - get(section, item, fallback=Ellipsis)
- Used as a drop in replacement for ConfigParser.get() with dynamic config field names (using a string variable for the section and item names instead of python code attribute access) - Warning - With this method Python code checkers (linters) will not warn about invalid config items. You can end up with runtime AttributeError errors. 
 - get_copy(copied_by: str = 'get_copy') ConfigHierarchy
- Copy this configuration. Useful when you need to programmatically modify a configuration without modifying the original base configuration. 
 - get_list(section, item, fallback=Ellipsis) list
- Used as a drop in replacement for ConfigParser.get() + list parsing with dynamic config field names (using a string variable for the section and item names instead of python code attribute access) that is then parsed as a list. - Warning - With this method Python code checkers (linters) will not warn about invalid config items. You can end up with runtime AttributeError errors. 
 - getboolean(section, item, fallback=Ellipsis) bool
- Used as a drop in replacement for ConfigParser.getboolean() with dynamic config field names (using a string variable for the section and item names instead of python code attribute access) - Warning - With this method Python code checkers (linters) will not warn about invalid config items. You can end up with runtime AttributeError errors. 
 - json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str
 - classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model
- Creates a new instance of the Model class with validated data. - Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values 
 - model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model
- Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy - Returns a copy of the model. 
 - model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]
- Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump - Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Parameters:
- mode¶ – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects. 
- include¶ – A list of fields to include in the output. 
- exclude¶ – A list of fields to exclude from the output. 
- by_alias¶ – Whether to use the field’s alias in the dictionary key if defined. 
- exclude_unset¶ – Whether to exclude fields that have not been explicitly set. 
- exclude_defaults¶ – Whether to exclude fields that are set to their default value. 
- exclude_none¶ – Whether to exclude fields that have a value of None. 
- round_trip¶ – If True, dumped values should be valid as input for non-idempotent types such as Json[T]. 
- warnings¶ – Whether to log warnings when invalid fields are encountered. 
 
- Returns:
- A dictionary representation of the model. 
 
 - model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str
- Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json - Generates a JSON representation of the model using Pydantic’s to_json method. - Parameters:
- indent¶ – Indentation to use in the JSON output. If None is passed, the output will be compact. 
- include¶ – Field(s) to include in the JSON output. 
- exclude¶ – Field(s) to exclude from the JSON output. 
- by_alias¶ – Whether to serialize using field aliases. 
- exclude_unset¶ – Whether to exclude fields that have not been explicitly set. 
- exclude_defaults¶ – Whether to exclude fields that are set to their default value. 
- exclude_none¶ – Whether to exclude fields that have a value of None. 
- round_trip¶ – If True, dumped values should be valid as input for non-idempotent types such as Json[T]. 
- warnings¶ – Whether to log warnings when invalid fields are encountered. 
 
- Returns:
- A JSON string representation of the model. 
 
 - model_dump_non_private(*, mode: Literal['json', 'python'] | str = 'python', exclude: Set[str] = None) dict[str, Any]
 - classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]
- Generates a JSON schema for a model class. - Parameters:
- Returns:
- The JSON schema for the given model class. 
 
 - classmethod model_parametrized_name(params: tuple[type[Any], ...]) str
- Compute the class name for parametrizations of generic classes. - This method can be overridden to achieve a custom naming scheme for generic BaseModels. - Parameters:
- params¶ – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params. 
- Returns:
- String representing the new class where params are passed to cls as type variables. 
- Raises:
- TypeError – Raised when trying to generate concrete names for non-generic models. 
 
 - model_post_init(_ModelMetaclass__context: Any) None
- We need to both initialize private attributes and call the user-defined model_post_init method. 
 - classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None
- Try to rebuild the pydantic-core schema for the model. - This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails. - Parameters:
- Returns:
- Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False. 
 
 - classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model
- Validate a pydantic model instance. - Parameters:
- Raises:
- ValidationError – If the object could not be validated. 
- Returns:
- The validated model instance. 
 
 - classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model
- Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing - Validate the given JSON data against the Pydantic model. - Parameters:
- Returns:
- The validated Pydantic model. 
- Raises:
- ValueError – If json_data is not a JSON string. 
 
 - classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model
- Validate the given object contains string data against the Pydantic model. 
 - classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model
 - classmethod parse_obj(obj: Any) Model
 - classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model
 - classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str
 - set_as_child(name: str, other_config_item: ConfigHierarchy)
 - static translate_config_data(config_data: MutableMapping)
- Children classes can provide translation logic to allow older config files to be used with newer config class definitions. 
 - classmethod validate(value: Any) Model
 - validate_model()
 - model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}
- A dictionary of computed field names and their corresponding ComputedFieldInfo objects.